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A Domain-Specific Language for manipulation of binary
data in Dylan

Hannes Mehnert
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Dylan Hackers

ABSTRACT

We present a domain specific language for manipulation of
binary data, or structured byte sequences, as they appear
in everyday applications such as networking or graphics file
manipulation. Our DSL is implemented as an extension of
the Dylan language, making use of the macro facility. Dylan
macros, unlike Common Lisp macros, are implemented as
pattern matches and substitutions on the parse tree, and we
will show the strengths and limits of this approach for the
given problem.

1. INTRODUCTION

In the modern computer landscape, exchange of data as vec-
tors of bytes is ubiquitous, and the concept of files or net-
work packets has become second nature to every program-
mer. The concept appears to be simple, but closer inspection
shows that those “bags of bytes” have an internal structure
that the sender and receiver need to agree upon. A lot of the
effort in designing the external interfaces for a given piece
of software goes into writing code that reads or writes this
structure according to some agreed-upon specification. This
is time-consuming and error-prone.

We encountered this problem when writing a network anal-
ysis application in the Dylan programming language, where
a large number of different network protocols needs to be
supported. We decided to approach it by implementing a
domain specific language for describing arbitrary binary for-
mats, as well as the generalized abstractions for both parsing
and generating byte vectors in these formats.

Our design goals were expressiveness, encapsulation, gener-
icity and efficiency. By expressiveness we mean that def-
initions of the structure of a byte vector format should be
compact and free of redundancy. Encapsulation refers to the
goal of hiding and automating as much as possible from the
user, such as platform endianness or computation of field
offsets. Genericity means that our DSL shall be applica-
ble to arbitrary binary formats. Efficiency is a demand to
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make usage of our DSL and framework as fast as it would
have been with manually written manipulation code, ideally
rivaling C code.

Section 2 shows the DSL we devised, and introduces the de-
sign of the framework behind it. In section 3, we have a look
at related approaches. Section 4 finally gives an overview of
what we have achieved and an outlook on future work.

2. SOLUTION
2.1 Dylan Macros

The Dylan macro system [7] provides a tool to extend the
grammar of the core language by the user. Unlike the pre-
processor macros of the C language, it doesn’t operate on
the character stream input of the source file. Rather, it per-
forms pattern matching and substitution on a grammatical
level, by operating on the parse tree of the source input.

In a way, this can be seen as applying the idea of Lisp macros
to a language with a more complex syntax. It is often said
that Lisp is so powerful, because in it “code is data”. What’s
meant by that phrase is that, by virtue of the simplicity of
the s-expression grammar and its representation as nested
lists, it is easy to manipulate source code on a structural
level, and thus the power to do meta programming arises.
A Lisp macro is expanded by finding its call site in the
nested list, which is equivalent to doing pattern matching
on a nested list, and replacing the call by a nested list that’s
produced from an expression in the macro definition. A Dy-
lan macro is expanded by finding its call site, matching a
Dylan grammar fragment expression on the parse tree, and
replacing the call by another fragment expression with in-
terpolated pattern variables.

Here is a simple example for a macro definition in Dylan:

define macro inc!

{ inc!(?:expression) }

=>

{ 7expression := 7expression + 1 }
end

All macro definitions follow this general structure. The first
line introduces the macro definition, and states the macro
name. Then, the pattern and substitution fragments are
given in curly braces, separated by a => token. Every to-
ken that does not have a leading question mark character is



taken as a literal. It has to appear in this place in the macro
call when used on the left hand side, or gets copied into the
expansion on the right hand side.

Tokens with a leading question mark are pattern variables.
On the left hand side, they are introduced with a name and
a type. The type is one of a few select productions in the
Dylan phrase grammar, such as expression or body. A
wildcard type of * is also available, which matches all types
of grammar fragments. The name appears between the ques-
tion mark and the colon, the type appears after the colon.
If the name is omitted, it defaults to being the same as the
type, i.e., 7:expression and 7expression:expression are
equivalent, both introduce a pattern variable expression
with a type of expression.

When a macro is called in Dylan, the left hand side of the
macro definition is matched with the call site, and pattern
variables get bound to the fragment that’s written in their
place. Our macro would match a call like inc! (foo) and
would bind the pattern variable 7expression to the expres-
sion fragment foo. On the right hand side, the pattern
variable is interpolated into the literal fragment, producing
the desired substitution fragment. Our call would expand
to foo := foo + 1.

The equivalent macro definition in Lisp would look like this:

(defmacro inc! (expression)
‘(setf ,expression (+ 1 ,expression)))

The structural similarities become apparent here. The left
hand side of the Dylan macro definition is essentially equiv-
alent to the macro name plus lambda list in the defmacro.
Dylan uses a more powerful deconstruction mechanism that
makes use of literal tokens, so macro arguments a.k.a. pat-
tern variables need to be introduced with a question mark.
The right hand side of the Dylan macro can be thought of
being the equivalent of a backquoted list, with the question
mark being replaced by the comma operator.

However, Dylan macros as specified in the language stan-
dard are not as powerful as their Lisp counterpart. The right
hand side of macro definitions are always literal fragments
with interpolated variables, whereas a Lisp macro can evalu-
ate an arbitrary Lisp expression at compile time to produce
a substitution. To keep the analogy: the macro expansion
is always a backquoted list, and all unquoted elements are
bindings introduced in the macro argument lambda list.

However, multiple patterns and substitutions can be given
for a certain macro, and auxiliary rules can be specified for
an even more fine-grained control over the syntax of the
macro call. This allows to implement recursive macros, and
makes Dylan macros powerful enough to write the equivalent
of the Lisp loop macro, with its colorful syntax.

2.2 Terminology

We call a vector of bytes that has an associated definition for
its interpretation a frame. These come in two variants: some
cannot be broken down further structurally, we call those
leaf frames. The others have a composite structure, those

are container frames. They consist of a number of fields,
which are the named components of that frame. Every field
in a container frame is a frame in itself, leading to a recursive
definition of frames that follows the Composite pattern [5].
The description of the structure of a container frame in our
DSL is referred to as a protocol definition.

2.3 Representation in Dylan

Since our goal is to provide an extension to Dylan for
manipulating frames, we have to decide on a representa-
tion of frames as Dylan objects, and a set of functions
on these objects to perform the manipulation. The ob-
vious representation, which we have chosen, introduces a
class hierarchy rooted at the abstract superclass <frame>,
with the two disjoint abstract subclasses <leaf-frame> and
<container-frame>. Every type of frame in the system
is represented as a concrete subclass of either one, and
actual frames are instances of these classes. A pair of
generic functions, parse-frame and assemble-frame, con-
vert a given byte vector into the appropriate high-level in-
stance of <frame>, or vice versa.

Access to the fields of a container frame is done via getter
and setter functions. Since access to slots in a Dylan class
is also done via getters and setters, this makes fields in a
frame look like slots in a class to code manipulating these
frames.

For convenience, Dylan provides syntactic sugar for calling
getters and setters. The expression foo(bar) that calls the
function foo with some bar as an argument can be writ-
ten equivalently using the dot syntax: bar.foo. Likewise,
foo-setter (23, bar) is the same as bar.foo := 23.

Typical code that handles a frame then looks like this:

let frame = parse-frame(<ethernet-frame>,
some-byte-vector) ;
format-out ("This packet goes from %= to %=\n\",
frame.source-address,
frame.destination-address) ;

The first line binds the variable frame to an instance of some
subclass of <ethernet-frame>. This instance is created
from the vector of bytes passed to the call of parse-frame.
Then, the value of the source and destination fields in the
Ethernet frame are extracted and printed.

The appropriate classes and accessor functions are not writ-
ten directly for container frames. Rather, they are created
by invocation of the define protocol macro. This serves
two purposes: it allows a more compact representation, elim-
inating the need to write boilerplate code over and over
again, and it hides implementation details from the user
of the DSL.

2.4 A simple protocol definition
In the simplest case, a protocol definition lists the fields,
giving a name and frame type to each. Here is an example.

define protocol foo (container-frame)



field source
field destination ::
end

:: <address>;
<address>;

This macro usage defines a protocol named foo. It inher-
its from a container-frame. The protocol consists of two
fields, named source and destination, with the same type
<address>. This class is a subclass of <leaf-frame> and
has a fixed size.

We will see the full expansion process later, but for now, we
will show a simplified expansion that illustrates the general
concept:

define class <foo> (<container-frame>)
class slot frame-fields = $frame-fields-<foo>;
slot source :: <address>;
slot destination :: <address>;
end;
define constant $frame-fields-<foo>
= vector (make (<field>,
name: "source",
type: <address>),
make (<field>,
name: "destination",
type: <address>));

This defines the «class, <foo>  a subclass of
<container-frame>. <foo> contains three slots, a
class slot frame-fields, which refers to the constant
$frame-field-<foo>, a source and destination of type
<address> each. The constant is defined as vector of
<field> objects, one for each field statement in the macro
call.

We’re assuming here that parse-frame and assemble-frame
just walk the list of fields, and fill in or read the appropriate
slots in the class. The full version is more intricate and
provides lazy parsing, we’ll see this later.

The protocol-definer-macro does the expansion and is de-
fined as following;:

define macro protocol-definer
{ define protocol ?7:name (?superprotocol:name)
?fields:*
end }
=> { define-class("<" ## 7name ## ">";
"<" ## 7superprotocol ## ">";
7fields);
frame-field("<" ## 7name ## ">"; 7fields) }
end;

This definition macro calls two function macros in the ex-
pansion, define-class, which defines a class with the given
name, the superprotocol and the fields. The second macro
call is frame-field, which defines the constant containing
the fields of the protocol.

## is the splicing operator in Dylan macros. It is used here to
add angle brackets to the protocol name, to generate a Dylan
class name that follows the standard naming conventions.

define macro define-class
{ define-class
(?:name; 7superprotocol:name; ?fields:*) }
=> { define class ?name (7superprotocol)
class slot frame-fields
= "$frame-fields-" ## 7name;
7fields
end }

fields:
{r=>4{1
{ 7field:* ; .} => { ?field ; ... }
field:
{ field ?7:name
=> { slot 7name
end;

?type:name }

The define-class macro expands to a class definition with
the corresponding name and superprotocol. The colon-
seperated list of fields is matched by the auxiliary macro
fields. This has two possible expansions: empty to termi-
nate the recursion, or 7?field:* followed by a colon. The
ellipsis ... means exactly the same thing as the pattern
variable that is rewritten by this auxiliary rule set. So, a
?field:* can be followed by another ?field:*, providing
recursive matches. The auxiliary rule set field converts a
field with a name and a type to a slot with the same name,
the specified type and an optional init-keyword. ?#"name"
treats the macro variable as a symbol.

define macro frame-fields

{ frame-fields(?7:name; ?fields:*) }

=> { define constant "$frame-fields-" ## 7name =
vector(?fields); }

fields:
{r=>{13
{ 7field:* ; } => { 7field, ... }
field:
{ field ?7:name :: 7type:name }
=> { make(<field>, name: ?"name", type: 7type)
end;

The frame-fields expands to a constant,
$frame-fields-<foo> in our example. It consists of
a vector of fields. We call the function vector on the macro
expansion of the ?fields macro variable. The auxiliary
rule set fields is similar to that of the previous macro.
The only difference is the comma instead of the colon on
the right hand side. This is needed because the vector
function expects comma-separated objects. The field
auxiliary rule set creates a <field> instance with its name
as string and its type.

11 7type, init-keyword: ?7#"name" }



2.5 Ethernet frames, an illustrated example
A first real world example is Ethernet v2. It is the most
common link-layer protocol used in IP networks. Our pro-
tocol definition of an Ethernet frame is shown:

define protocol ethernet-frame (header-frame)
summary "ETH Y%= -> %=",
source-address, destination-address;
field destination-address :: <mac-address>;
field source-address :: <mac-address>;
layering field type-code
<2byte-big-endian-unsigned-integer>;
variably-typed field payload,
type-function: payload-type(frame);
end;

Here, <ethernet-frame> inherits from <header-frame>
which is an abstract subclass of <container-frame> and
indicates that the frame consists of a header and a payload.

The second line starts with the summary keyword. This is
used to provide a printing method on the defined protocol.

The destination and source fields are straightforward from
the simple case, its type is a <mac-address>.

The fifth line contains the attribute layering in front of
the field declaration. This provides the information that
the value of this field controls the type of the payload, and
introduces a registry for field values and matching payload
types. We’ll use this in a later example to declare how an
IP frame is embedded in an Ethernet frame.

The type of type-code is
<2byte-big-endian-unsigned-integer>. Unlike with
a <mac-address> field, reading the field does not return an
instance of the leaf frame type. Instead, translation into
a Dylan <integer> is done. We call frames that have this
property translated frames, and those without a matching
Dylan type untranslated frames.

The sixth line uses another attribute, variably-typed, of a
field. Most fields have the same type in all frame instances,
these are statically typed. Some fields depend on the value of
another field of the same protocol, these are variably typed.
To figure out the type, a type function has to be provided
for the variably typed field using the type-function:.

The first three fields are of fixed size, a <mac-address> has 6
bytes, a <2byte-big-endian-unsigned-integer> obviously
2 bytes. The payload consumes the rest of the byte vector.
We make an effort to compute the start offsets of each field in
a frame at compile time, this is only possible if all preceeding
fields have a fixed length. We’re implicitly assuming here
that fields are packed next to each other. It’s possible to
override this behaviour, as we will see later.

The macro which matches the above protocol definition and
generates several classes and methods is shown in detail.

The first new feature the summary keyword, it is matched
by an additional rule of the protocol-definer-macro:

{ define protocol ?7:name (?7superprotocol:name)
summary ?summary:;
7fields:*
end }
=> { summary-generator
("<" ## 7name ## ">"; 7summary);
define protocol ?7name (7superprotocol)
7fields
end; }

The helper macro summary-generator is called with the
class name and the rest of the summary line. Also define
protocol is called without the summary line, which matches
another macro rule. The summary-generator macro is
shown next:

define macro summary-generator
{ summary-generator (?type:name;
7summary-string:expression,
?summary-getters:*) }
=> { define method summary (frame :: 7type)
=> (result <string>);
apply(format-to-string,
?summary-string,
map(rcurry(apply, frame),
list(?summary-getters)));
end; }
end;

This macro defines a method summary on an instance of the
specific frame. The method calls format-to-string with
the summary-string, which matches the first expression. In
our example it is "ETH %= => J=". The arguments of the
format string are computed by applying each provided getter
on the actual instance of the frame.

The generation of classes and accessors is a little more in-
volved in our real code than in the simple example above.
To provide efficiency, we generated two Dylan classes for
each protocol definition: decoded frames, which store only
the high-level objects in a slot for each field, and unparsed
frames, which store a byte vector and cache in the form of a
decoded frame. Parsing is done lazily on unparsed frames,
only when a field value is accessed, it is parsed. This reduces
the amount of work done for each received frame.

We generate custom getter methods for unparsed classes
which store the value in the cache object. Each getter needs
access to its corresponding field to compute the start offset
of the field in the byte vector. We also need to keep track
of start and end offsets we already computed for a certain
field, which we do in a class <frame-field>.

To provide quick access to the <frame-field> for a given
field, we give an index number to every field. The index is
generated by the frame-field-generator macro which is
called by the protocol-definer-macro as shown:

frame-field-generator
("<unparsed-" ## 7name ## ">";
field-count



("<unparsed-" ## 7superprotocol ## ">");
?fields);

It has three parameters, the class name, the start index,
which is the result of field-count on the superclass, and
the field specifications.

define macro frame-field-generator
{ frame-field-generator
(7type:name;
?count:expression;
?args:* field 7field-name:name 7foo:* ;
?rest:*) }
=> { unparsed-frame-field-generator
(?field-name, 7type, 7count);
frame-field-generator
(7type; ?Pcount + 1; ?7rest) }
{ frame-field-generator
(?:name; 7count:expression) }
=> { define inline method field-count

(type :: subclass(7name))
=> (res <integer>)
?count

end; }

end;

The frame-field-generator calls itself recursively in the
first rule, incrementing count by one. Once 7rest is not
present, the second macro rule matches which defines the
method field-count. We depend on constant folding in
the compiler to fold the 7count expression to an integer in
order to make field access efficient.

The first rule in the macro calls
unparsed-frame-field-generator, which is again a
macro:

define macro unparsed-frame-field-generator
{ unparsed-frame-field-generator
(?:name, ?frame-type:name,
?field-index:expression) }
=> { define inline method ?name
(mframe :: 7frame-type)
if (mframe.cache.?name)
mframe.cache.?name
else
let frame-field
= get-frame-field(?field-index,
mframe) ;
let (value, parsed-end)
= parse-frame-field(frame-field);
mframe.cache.?name := value;
end;
end; }

This generates a getter which does a lookup in the cache
object and if the slot has a value returns this. If it does not
have a value, thus is not yet parsed, the get-frame-field
with the index and the actual frame instance is called. This
returns an object with offsets for the specific field in the

actual frame, inheriting the information from the <field>
object. After that, parse-frame-field is called which re-
turns the value of the field in the frame. This value is stored
in the cache object and returned.

We also support in-place modification of frames. A field of
an unparsed frame can be set on high-level, and the cor-
responding bits of the byte vector will automatically be
changed, as long as no other field offsets change during
this operation- This provides efficiency when a lot of similar
frames should be generated. The setter method for a field
is also defined in the unparsed-frame-field-generator
macro:

{
define inline method 7name ## "-setter"
(value, mframe ?frame-type) => (res)
mframe.cache.?name := value;
let frame-field
= get-frame-field(?field-index, mframe);
assemble-field-into
(frame-field.field,
mframe,
subsequence (mframe.packet,
start: frame-field.start-offset));
value;
end;
}
end;

First, the setter in the cache object is called. Then the
corresponding metadata object is looked up in the vector.
Finally assemble-field-into with the field, the frame and
the proper subsequence of the byte vector is called. This
method converts the value to binary representation and
modify the corresponding bits in the byte vector.

To get the Dylan class of a field, with translated and
untranslated frames in place, we defined a generic function,
high-level-type(frame-type subclass(<frame>))
=> (res :: <type>). This is used in the class definition
of a decoded class.

There are fields which can be present multiple times, like
IP options in an IPv4 frame. We introduced the at-
tribute repeated for these fields, and translate their type
to a <collection> to store multiple occurrences. The
decoded-class-definer is similar to the define-class
macro in the simple protocol definition:

define macro decoded-class-definer
{ decoded-class-definer
(?:name; 7superclasses:*; 7fields:*) }
=> { define class 7name (7superclasses)
7?fields
end }

fields:
{r=>4{1%

{ 7field:x; } => { 7field ; ... }



field:

{ variably-typed field 7:name, 7rest:* }

=> { slot 7name
init-keyword:

{ repeated field 7:

=> { slot 7name
init-keyword:

{ 7attrs:* field 7:
?field-type:name

: false-or(<collection>) =

: false-or(<frame>) = #f,

7#"name" }

name 7rest:* }

#f
?#"name" }

name \::

?rest:* }

=> { slot 7name
:: false-or(high-level-type(?field-type))
= #f,
init-keyword: 7#"name" }
end;

Each field is translated to a slot of the decoded class, by
default initialized to #f.

The frame-field macro which defines the vector of fields
of the container frame is only shown partially, see the full
source for all details. The field auxiliary macro looks like
this:

field:
{r=>{1
{ variably-typed field 7:name, 7args:*; ... }
=> { make(<variably-typed-field>,
name: 7#"name",
getter: 7name,

setter: 7name ## "-setter",
?args), ... }
{ variably-typed field ?:name = 7init:expression ,
rargs:*; ... }

=> { make(<variably-typed-field>,
name: 7#"name",
init-value: 7init,
getter: 7name,

setter: 7name ## "-setter",
7args), ...
{ 7attributes:* field 7:name \:: ?field-type:name;

R
=> { make(7attributes,
name: 7#"name",
type: 7field-type,

getter: 7name,
setter: 7name ## "-setter"), ... }
{ 7attributes:* field 7:name \:: ?field-type:name,
7args:*; ... }

=> { make(7attributes,
name: 7#"name",
type: 7field-type,

getter: 7name,
setter: 7name ## "-setter",
?args), ...

There are two different cases of variably typed fields shown:
with and without a default initialization value. There are
four different cases for other fields, with and without default
initialization value (only the latter is shown here) as well as
with and without optional arguments.

The attributes auxiliary macro specifies which field class
is instantiated based on the given attributes:

attributes:
{ } => { <single-field> }
{ layering } => { <layering-field> }
{ repeated } => { <repeated-field> }

The args auxiliary macro supports several keywords for
frames:

args:
{ static-start: ?start:expression, ... }
=> { static-start: ?start, ... }
{ type-function: 7type:expression, ... }
=> { type-function: method(7=frame :: <frame>)
7type
end, ... }

Only two of the possible arguments are shown here, again see
the full source for details. First comes the static-start:
keyword, which is followed by an expression and expands
to the static-start: init keyword with the expression as
its value. The type-function: keyword is used in variably
typed fields, already seen in the ethernet frame definition.
This expands to an anonymous method which introduces an
unhygienic lexical binding to a frame with ?=frame. This is
how frame in payload-type(frame) is bound.

2.6 IPv4 Frame - more features of our DSL
Another real world protocol is IPv4, our frame definition is
shown:

define protocol ipv4-frame (header-frame)

summary "IP SRC %= DST =",

source-address, destination-address;
over <ethernet-frame> #x800;
field version :: <4bit-unsigned-integer> = 4;
field header-length :: <4bit-unsigned-integer>,

fixup: ceiling/

(reduce
(\+, 20,

map (compose (byte-offset, frame-size),

frame.options)),
4);
field type-of-service
field total-length
<2byte-big-endian-unsigned-integer>,
fixup: frame.header-length * 4

:: <unsigned-byte> = 0;

+ byte-offset(frame-size(frame.payload));

field identification
<2byte-big-endian-unsigned-integer> =
field evil :: <lbit-unsigned-integer> = 0;
field dont-fragment <lbit-unsigned-integer> =
field more-fragments :: <lbit-unsigned-integer> =
field fragment-offset
<13bit-unsigned-integer> = 0;
field time-to-live :: <unsigned-byte> = 64;
layering field protocol :: <unsigned-byte>;
field header-checksum

23;

0;



:: <2byte-big-endian-unsigned-integer> = 0;
field source-address :: <ipv4-address>;
field destination-address :: <ipv4-address>;
repeated field options :: <ip-option-frame>,

reached-end?:

instance? (frame, <end-of-option-ip-option>);

variably-typed-field payload,

start: frame.header-length * 4 * 8,

end: frame.total-length * 8,

type-function: payload-type(frame);

end;

There are some additional features which need to be taken
care of. The first new feature is seen in line 3, starting
with the keyword over. It registers the value of the lay-
ering field for the specific protocol, so if the layering field
in an <ethernet-frame> is #x800, its payload is an [Pv4
frame. The protocol stacking code also sets the type-code
field of an Ethernet frame with an IPv4 frame as payload
during assembly to #x800. This is done by another rule for
protocol-definer-macro matching over.

The field version specifies a default value of 4 with = 4.
This is used as default value when an IPv4 frame object is
instantiated and no version is provided.

The header-length field uses the fixup: keyword, which
is followed by a Dylan expression where frame is bound,
similar to the type-function: keyword. The fixup function
is called in assemble-frame to compute a value for this field
if otherwise unspecified.

The next interesting field is the repeated field ip-options.
Repeated fields have a list of values of the field type, instead
of just a single one. We support multiple typed of repeated
fields, which differ by the way the compute the number of el-
ements in a repeated field. Choices are: self-delimited (some
magic end of list value present, externally delimited (list
ends when the next field starts) or count (some other field
specifies a count of elements in the repeated field). The
ip-option field uses the reached-end?: keyword which re-
turns #t when the repeated field is fully parsed. Thus, a
repeated field is self delimited. In IPv4, the last option is
an <end-of-ip-option-ip-option>.

The payload field of the Ethernet frame definition is the
first field we encounter that has a start offset that’s not nec-
essarily equivalent to the end offset of the previous field.
Instead, it is computed by the value of the header-length
field, which is given in 32 bit words. We supply an expres-
sion to calculate the start offset via the start: keyword.
Other keywords we support here are end:, length:, and
their static counterparts, static-start:, static-end: and
static-length:.

Let’s take a closer look at the type declaration on
the ip-option field, which is <ip-option-frame>.
This is an abstract protocol inheriting from
<variably-typed-container-frame>.

define abstract protocol ip-option-frame
(variably-typed-container-frame)

field copy-flag :: <lbit-unsigned-integer>;
layering field option-type
: <7bit-unsigned-integer>;
end;

The <variably-typed-container-frame> class is used in
container frames which have the type information encoded
in the frame. Parsing of the layering field of these container
frames is needed to find out the actual type.

define protocol end-of-option-ip-option
(ip-option-frame)
over <ip-option-frame> O;

end;

This defines the <end-of-ip-option-ip-option> which has
the option-type field in the ip-option frame set to 0. An
<end-of-ip-option-ip-option> does not contain any fur-
ther fields, thus only has the two fields inherited from the
<ip-option-frame>.

3. RELATED WORK

We started our work by looking at several technologies that
share some of the design goals, such as ASN.1 [1], the Scapy
[3] network analysis program, and the defstorage macro of
the Genera operating system. We later discovered a related
approach described [6].

4. CONCLUSION

We have successfully used our DSL and framework to im-
plement a graphical network analysis tool in the style of
the well-known Wireshark [4]. We have also written a full
TCP/IP stack in Dylan. This shows that our DSL satisfies
the design goal of being applicable for our problem domain.

We have gone some way in terms of performance. The two
major contributing factors are the lazy parsing mechanism,
and consistent use of subsequences for passing around byte
vectors, eliminating the need to copy them. However, gen-
eration of specialized inlineable accessors would be required
to reach the order of performance we envision.

The pattern-substitution based macro system of Dylan car-
ried us quite some way, but eventually we hit the limitations
of what is possible to do with it. For some cases, we have
to write patterns for every possible permutation of spec-
ified and non-specified information, as in the case of the
frame-field macro. This is not particularly elegant. We
also sometimes resorted to tricks like depending on constant
folding in the compiler to do computation of start offsets of
frames at compile time, in order to improve performance.
Nevertheless, the ability to perform more complex compu-
tations at compile time, and generating code depending on
the outcome of this computation, is sorely lacking for gen-
eration of efficient getter functions. Thus, we are not quite
where we want to be in terms of performance.

Jonathan Bachrach published a proposal to add the full
power of procedural macros to the Dylan language [2]. The
basic idea is to allow arbitrary Dylan expressions on the right



hand side of a macro pattern, which evaluate to a phrase
grammar fragment. A literal phrase fragment is also added.
For instance, under this proposal, our initial example macro
could be written like this:

define macro inc!
{ inc!(?:expression) 1} =>
inc!-generator (?expression)
end;

define function inc!-generator(expression)
#{ 7expression := 7expression + 1 }
end;

Note the missing curly brackets on the right hand side of a
macro, instead, a function is called. The function implemen-
tation uses the newly introduced hashmark-curly syntax to
indicate a literal grammar fragment, much like a backquoted
list in Lisp. The returned fragment is used as the expansion.

Having this feature would be tremendously useful, and
would increase performance and elegance of our code. Un-
fortunately, it is unimplemented, mainly because compile-
time evaluation semantics of Dylan isn’t nailed down any-
where. However, the Open Dylan compiler (ex Harlequin
Dylan) uses a facility like this internally, making use of boot-
strapping tricks to bridge the gap between compile time and
runtime. We intend to make this functionality usable for our
code.

Finally, there is a wart in the elegance of protocol def-
initions in our language. For example, the start of
the field payload depends on the value of another field
header-length. This dependency must be annotated on
both fields: once to determine the start of payload from the
value of header-length during parsing, and once to calcu-
late the value of header-length from the start of payload
during assembly. Both expressions are related, but we
lack the kind of symbol manipulation capability required
to translate one into the other.

Our plans for future work include further refinement of our
DSL to match other binary formats as they are encountered.
Also, we plan to use the procedural macro system found in
the Open Dylan compiler core to improve performance of
getter methods.
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